中国

Publications

Research techniques made simple: experimental methodology for single-cell mass cytometry

Matos, T.R., Liu, H., Ritz, J.

Growing recognition of the complexity of interactions within cellular systems has fueled the development of mass cytometry. The precision of time-of-flight mass spectrometry combined with the labeling of specific ligands with mass tags enables detection and quantification of more than 40 markers at a single-cell resolution. The 135 available detection channels allow simultaneous study of additional characteristics of complex biological systems across millions of cells. Cutting-edge mass cytometry by time-of-flight (CyTOF®) can profoundly affect our knowledge of cell population heterogeneity and hierarchy, cellular state, multiplexed signaling pathways, proteolysis products, and mRNA transcripts. Although CyTOF is currently scarcely used within the field of investigative dermatology, we aim to highlight CyTOF's utility and demystify the technique. CyTOF may, for example, uncover the immunological heterogeneity and differentiation of Langerhans cells, delineate the signaling pathways responsible for each phase of the hair cycle, or elucidate which proteolysis products from keratinocytes promote skin inflammation. However, the success of mass cytometry experiments depends on fully understanding the methods and how to control for variations when making comparisons between samples. Here, we review key experimental methods for CyTOF that enable accurate data acquisition by optimizing signal detection and minimizing background noise and sample-to-sample variation.

Citation

Matos, T.R., Liu, H., Ritz, J. "Research techniques made simple: experimental methodology for single-cell mass cytometry" Journal of Investigative Dermatology (2017): e31–8